

Subject Code: NCE 202

Subject Name: Hydraulics & Hydraulic Machines

DR. DEEPESH SINGH

DEPARTMENT OF CIVIL ENGINEERING

Harcourt Butler Technical University, Kanpur, India- 208002

DR. DEEPESH SINGH

DEPARTMENT OF CIVIL ENGINEERING

Harcourt Butler Technical University, Kanpur, India- 208002

INTRODUCTION

- WE have discussed Prismatic Channels in which bed slope and cross sectional shape do not change along channel length.
- Natural channels varies widely.
- But even man made channels may have to go transition due to engineering and economic considerations.
- For e.g. width of canal can be reduced when it crosses river or road, to reduce width of aqueduct or length of bridge.
- Reduction in width may be accompanied by raising or lowering of the bed to adjust the water level.

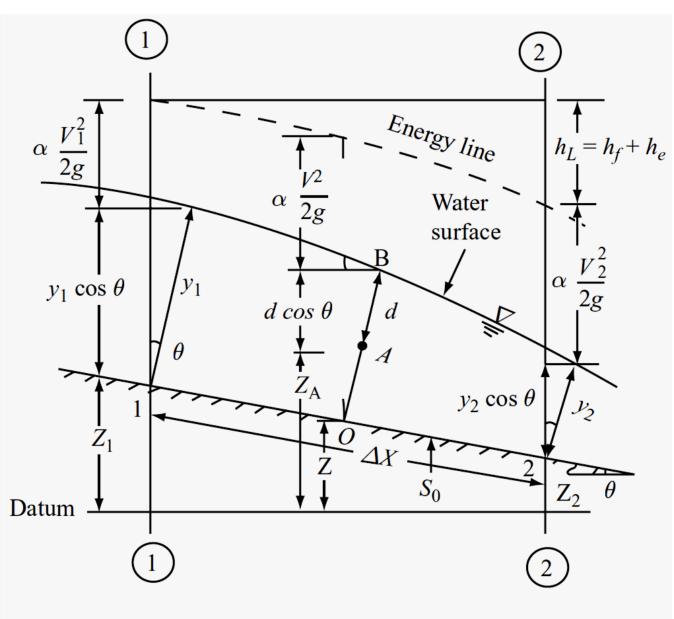


Fig.1.14 Definition sketch for the energy equation

SPECIFIC ENERGY

Total Energy
$$H = Z + y\cos\theta + \alpha \frac{v}{2g}$$

Assume datum coincides with channel bottom

$$E = y\cos\theta + \alpha \frac{V^2}{2g}$$

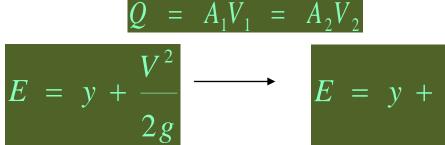
E is specific energy

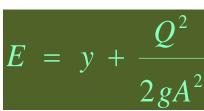
 \mathbf{I}^2

When
$$\cos \theta = 1.0$$
 and $\alpha = 1.0$,
$$E = y + \frac{V^2}{2g}$$

Specific Energy in a channel is defined as the energy per kg of water at any section increased w.r.t. channel bottom, Z = 0

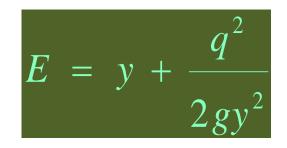
SPECIFIC ENERGY

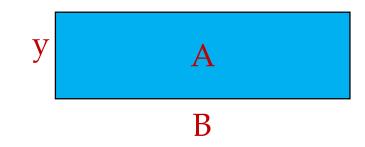




Consider rectangular channel (A=By) and Q=qB

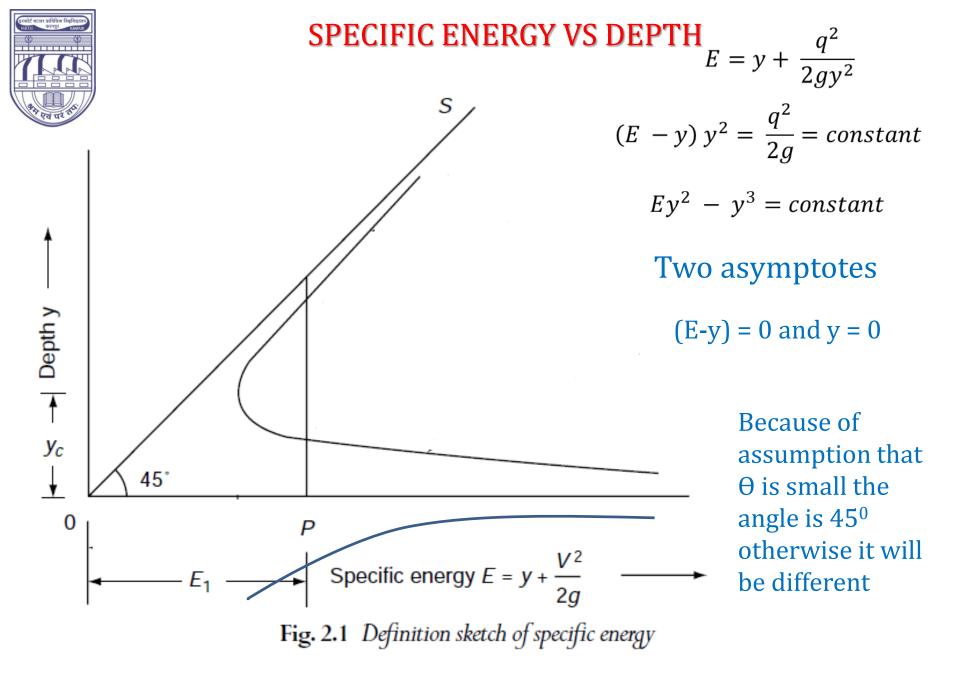
q is the discharge per unit width of channel





3 roots (one is negative)

For a given Q and channel section E depends on y only



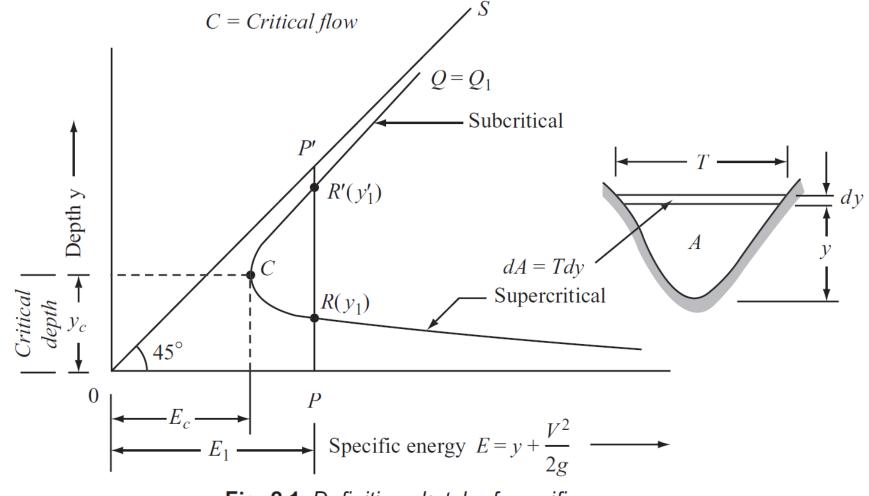


Fig. 2.1 Definition sketch of specific energy

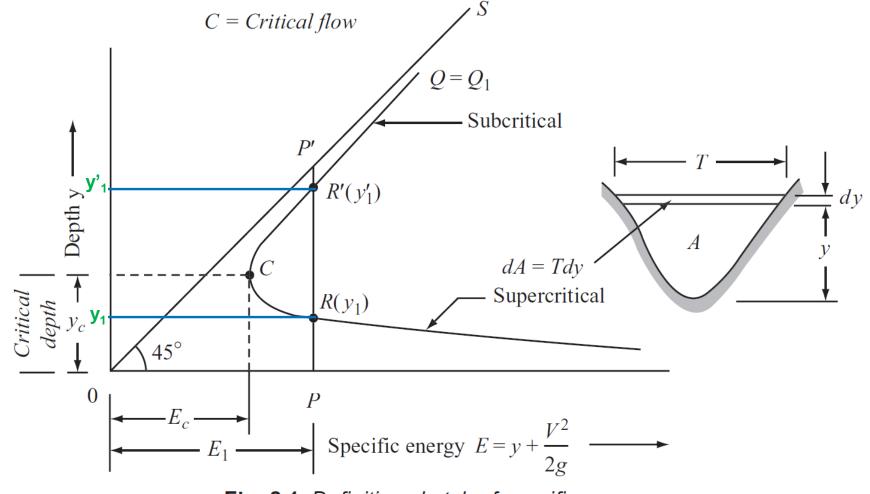


Fig. 2.1 Definition sketch of specific energy

Two possible depths at same specific energy: Alternate Depths. \Box At 45⁰ line E = y P'R' or P'R are velocity heads \Box No y for E < E_c \Box E_c is minimum specific energy

Go to the E vs y curve

For a rectangular channel $\frac{dE}{dy} = 0$ For minimum Specific Energy

For any other shape of channels

$$E = y + \frac{V^2}{2g} \qquad \qquad = y + \frac{Q^2}{2gA^2}$$

For minimum Specific Energy

$$\frac{dE}{dy} = 0$$

$$1 - \frac{Q^2}{gA^3} \cdot \frac{dA}{dy} = 0 \qquad \frac{dA}{dy} = T$$

So,
$$\frac{Q^2T}{gA^3} = 1$$

Condition for Critical Flow

For any other shape of channels

$$\frac{V^2}{2g} = \frac{Q^2}{A^2 2g} \qquad = \frac{gA}{T 2g} \qquad = \frac{A}{2T} \qquad = \frac{D}{2} \qquad D = \frac{A}{T}$$

D is Hydraulic Depth

So,
$$E_c = y_c + \frac{D_c}{2}$$

 $E = y + \frac{Q^2}{2gA^2}$ \longrightarrow $Q = A\sqrt{2g(E - y)}$ condition for maximum discharge differentiating

with respect to *y* and equating it to zero while keeping E = constant.

$$\frac{dQ}{dy} = \sqrt{2g(E-y)} \frac{dA}{dy} - \frac{gA}{\sqrt{2g(E-y)}} = 0$$

$$\frac{dA}{dy} = T$$
 and $\frac{Q}{A} = \sqrt{2g(E-y)}$ $\frac{Q^2T}{gA^3} = 1.0$

Froude number

$$Froude\ number = \sqrt{\frac{Inertia\ Force}{Gravitational\ Force}}$$

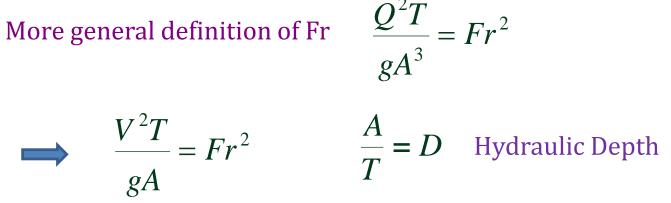
Its dimensionless number

Inertia Force = mass x acceleration = ρ . AV . V = ρ . l^2 . V^2 in form of dimension

Gravitational Force = mass x acceleration = ρ . AV . g = ρ . l³. g in form of dimension

Froude number =
$$\sqrt{\frac{V^2}{l.g}}$$

So,
$$Fr = \frac{V}{\sqrt{gy}} \implies Fr = \frac{V}{\sqrt{gD}} \implies Fr = \frac{V}{\sqrt{g}}$$

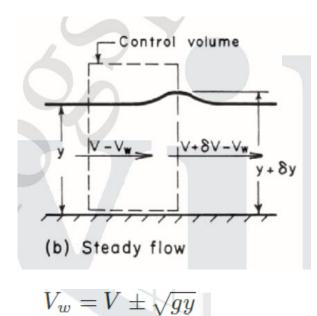


channel with large longitudinal slope θ and having a flow with an energy correction factor of α ,

$$F = V / \left(\sqrt{\frac{1}{\alpha}g\frac{A}{T}\cos\theta} \right)$$

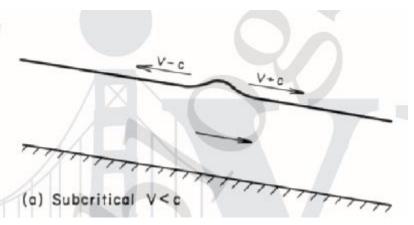
For critical flow: 1 = $\frac{Q^2 T}{gA^3} = Fr^2$ or $\frac{Q_c^2 T_c}{gA_c^3} = 1$

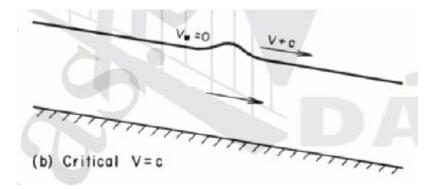
$$y_1 < y_c \implies V_1 > V_c \implies F_r > 1$$
 supercritical region
 $y'_1 > y_c \implies V'_1 < V_c \implies F_r < 1$ subcritical region

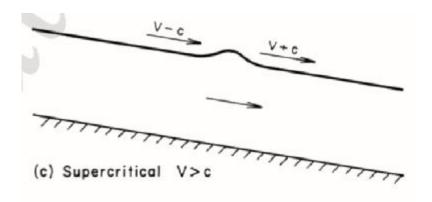


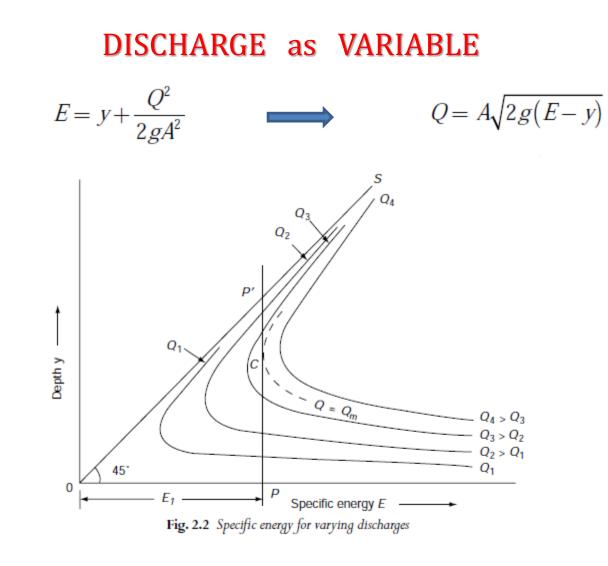
celerity, c, is the wave velocity relative to the medium in which the wave is traveling – i.e., $V_w = V \pm c$.

$$c = \sqrt{gy}$$









EX. ALTERNATE DEPTH AND FROUDE NUMBER

Example 2.1 A 2.5-m wide rectangular channel has a specific energy of 1.50 m when carrying a discharge of 6.48 m³/s. Calculate the alternate depths and corresponding Froude numbers.

$$E = y + \frac{V^2}{2g} = y + \frac{Q^2}{2gB^2y^2}$$

$$1.5 = y + \frac{(6.48)^2}{2 \times 9.81 \times (2.5)^2 y^2}$$

$$= y + \frac{0.34243}{y^2}$$

Solving this equation by trial and error, the alternate depths y_1 and y_2 are obtained as $y_1 = 1.296$ m and $y_2 = 0.625$ m.

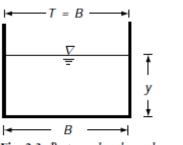
Froude number $F = \frac{V}{\sqrt{gy}} = \frac{6.48}{(2.5y)\sqrt{9.81y}} = \frac{0.82756}{y^{3/2}},$

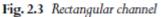
At
$$y_1 = 1.296$$
 m, $F_1 = 0.561$; and
at $y_2 = 0.625$ m, $F_2 = 1.675$

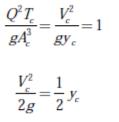
The depth $y_1 = 1.296$ m is in the subcritical flow region and the depth y = 0.625 m is in the supercritical flow region.

CALCULATION OF CRITICAL DEPTH

Rectangular Section

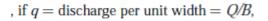






 $E_{c} = y_{c} + \frac{V_{c}^{2}}{2g}$ $= y_{c} + \frac{Q^{2}}{2gA_{c}^{2}} \qquad = y_{c} + \frac{m^{2}y_{c}^{5}}{4m^{2}y_{c}^{4}} \qquad E_{c} = 1.25y_{c}$ $A/T = y/2, \qquad F = \frac{V\sqrt{2}}{\sqrt{gy}}$

Specific energy at critical depth $E_c = y_c + \frac{V_c^2}{2g} = \frac{3}{2}y_c$

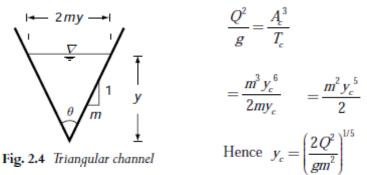


 $\frac{q^2}{g} = y_c^3 \qquad y_c = \left(\frac{q^2}{g}\right)^{1/3}$ Since A/T = y, $F = \frac{V}{\sqrt{gy}}$

Circular Channel

Trapezoidal Channel

Triangular Channel



SECTION FACTOR Z

$$Z = A\sqrt{A/T}$$

At the critical-flow condition, $y = y_c$ and $Z_c = A_c \sqrt{A_c/T_c} = Q/\sqrt{g}$

FIRST HYDRAULIC EXPONENT M

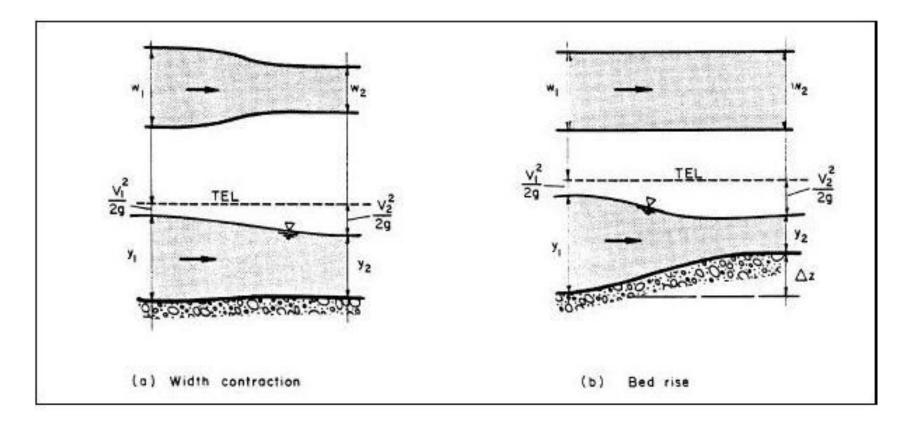
$$Z^2 = C_1 y^M$$

 C_1 = a coefficient and M = an expo nent called the *first hydraulic exponent*.

Example 2.3 Obtain the value of the first hydraulic exponent M for (a) rectangular channel, and (b) an exponential channel where the area A is given as $A = K_1 y^a$

$$Z = A\sqrt{A/T}$$
 $z^2 = \frac{A^3}{T} = B^2 y^3 = C_1 y^M$ $M = 3.0$

A transition is an open-channel flow structure whose purpose is to change the shape or cross-sectional area of the flow. The design objective is to avoid excessive energy losses and to minimize surface waves and other turbulence.

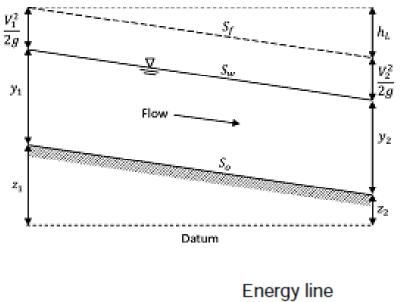


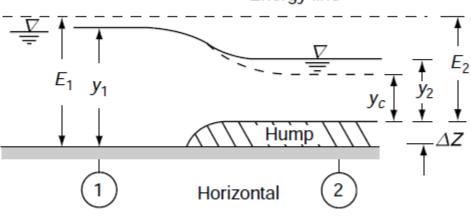
CHANNEL WITH A HUMP – Subcritical Flow

 $E_1 = y_1 + \frac{V_1^2}{2g}$

If no loss of energy

 $E_1 = E_2$





CHANNEL WITH A HUMP – Subcritical Flow

$$E_2 = y_2 + \frac{V_2^2}{2g} = y_2 + \frac{Q^2}{2gB^2y_2^2}$$

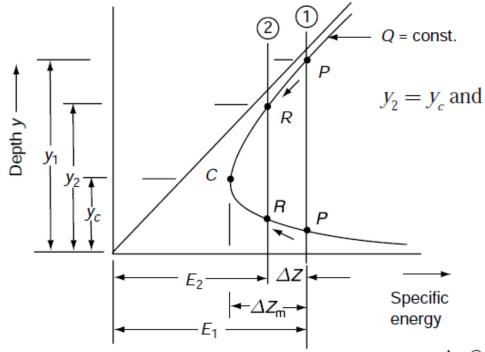


Fig. 2.10 Specific-energy diagram for Fig. 2.9

what happens when $\Delta Z > \Delta Z_m$

flow is not possible

d The upstream depth has to increase

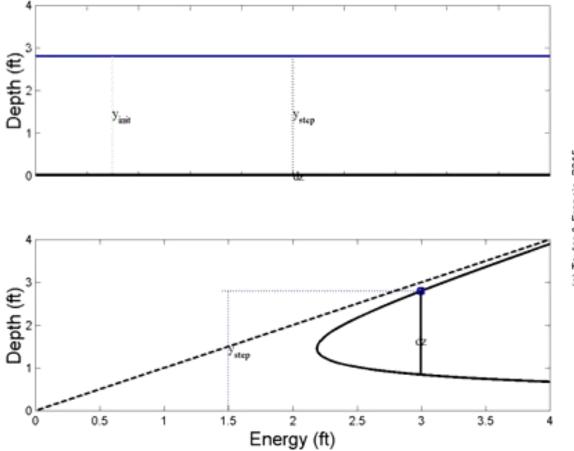
to cause an increase in the specific energy at Section 1.

$$E_{1}^{'} = y_{1}^{'} + \frac{Q^{2}}{2gB^{2}y_{1}^{2}}$$

{with $E_{1}^{'} > E_{1}$ and $y_{1}^{'} > y_{1}$

At Section 2 the flow will continue at the minimum specific energy level, i.e. critical condition.

CHANNEL WITH A HUMP – Subcritical Flow

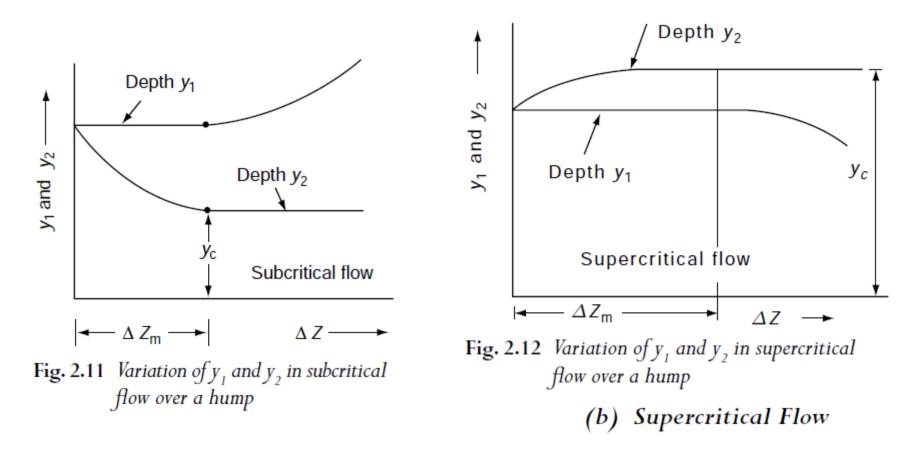


(c) Taylor & Francis, 2015

25

CHANNEL WITH A HUMP – Subcritical Flow

$$y_2 = y_c$$
 and $E_1' - \Delta Z = E_2 = E_c = y_c + \frac{Q^2}{2g B^2 y_c^2}$



Example 2.10 A rectangular channel has a width of 2.0 m and carriers a discharge of 4.80 m³/s with a depth of 1.60 m. at a certain section a small, smooth hump with a flat top and of height 0.10 m is proposed to be built. Calculate the likely change in the water surface. Neglect the energy loss.

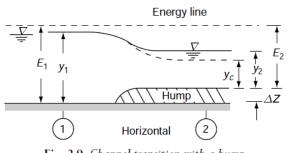


Fig. 2.9 Channel transition with a hump

$$q = \frac{4.80}{2.0} = 2.40 \text{ m}^{3/\text{s/m}} \qquad F_1 = V_1 / \sqrt{g y_1} = 0.379$$
$$V_1 = \frac{2.40}{1.6} = 1.50 \text{ m/s}, \ \frac{V_1^2}{2g} = 0.115 \text{ m}$$

hence the upstream flow is subcritical the hump will cause a drop in the watersurface elevation.

 $E_1 = 1.60 + 0.115 = 1.715$ m

At Section 2, $E_2 = E_1 - \Delta Z = 1.715 - 0.10 = 1.615 \text{ m}$ $y_c = \left(\frac{(2.4)^2}{9.81}\right)^{1/3} = 0.837 \text{ m}$ $E_c = 1.5 y_c = 1.256 \text{ m}$

$$y_2 + \frac{V_2^2}{2g} = E_2$$
 $y_2 + \frac{(2.4)^2}{2 \times 9.81 \times y_2^2} = 1.615$

Solving by trial-and-error, $y_2 = 1.481$ m.

(a) Subcritical flow in a Width Constriction

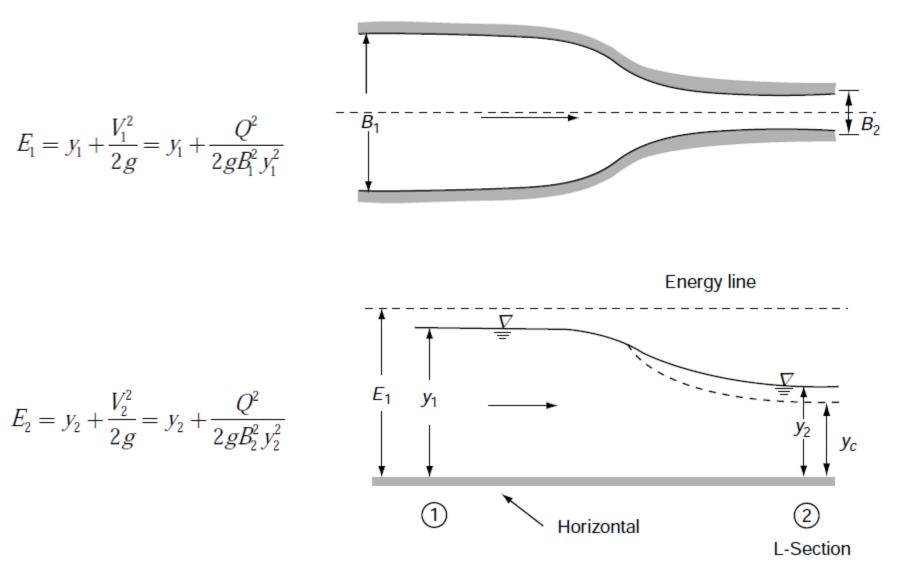
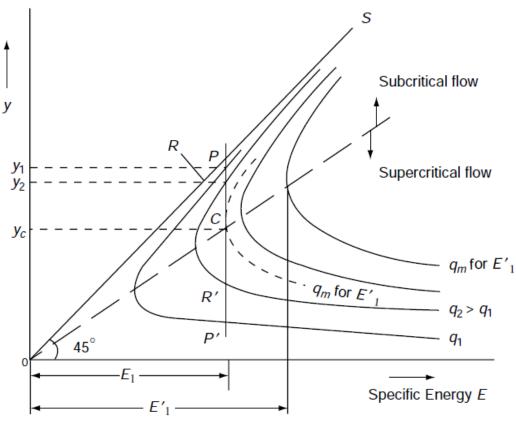


Fig. 2.14 Transition with width constriction

(a) Subcritical flow in a Width Constriction

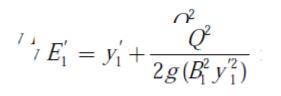
ोर्ट बटतर प्राविधिक कानपर

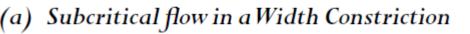


 $E_1 = E_{cm} = y_{cm} + \frac{Q^2}{2g(B_{2m})^2 y_{cm}^2}$

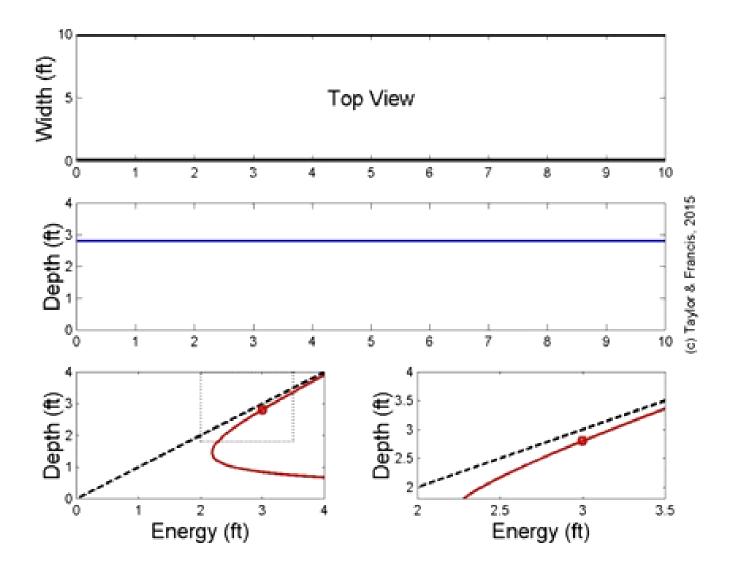
For a rectangular channel, at critical flow $y_c = \frac{2}{2}E_c$ Since $E_1 = E_{cm}$ and $y_c = \left(\frac{Q^2}{B_{2-}^2 g}\right)^{1/3}$ or $B_{2m} = \sqrt{\frac{Q^2}{g V_{m}^2}}$ $B_{2m} = \sqrt{\frac{27Q^2}{8\sigma E^3}}$

Fig. 2.15 Specific energy diagram for transition of Fig. 2.14





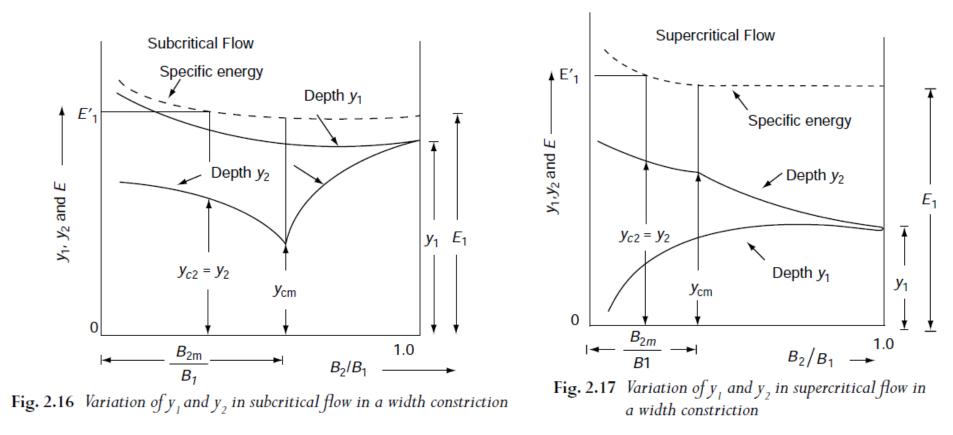
रकोर्ट बटतर प्राविधिक विश्ववि प्रकार कानपर



30

(a) Subcritical flow in a Width Constriction

कोर्ट बटतर प्राविधिक विश्व कानपर



TODAY'S DEAL

ASSIGNMENT -3

SOLVE ANY 10 UNSOLVED QUESTIONS FROM THE CHAPTER : ENERGY DEPTH RELATIONSHIP

LAST DATE: 11TH OCTOBER 2020, SUNDAY

MAIL TO : hhmc2021@gmail.com

THE END